Fabrication and Performance of Silicon Immersion Gratings for Infrared Spectroscopy

نویسندگان

  • Jasmina P. Marsh
  • Douglas J. Mar
  • Daniel T. Jaffe
چکیده

Silicon immersion gratings open up the possibility of compact infrared spectrometers with high throughput, high spectral resolution, and extensive instantaneous coverage. The performance of the diffraction gratings that we have been developing over the past 15 years has reached the level where it can exceed that of commercially available diffraction gratings. We have produced science-grade immersion grating echelles with coarsely spaced grooves on silicon substrates appropriate for applications in the near-infrared (1.1-5 μm). Devices in the current generation have excellent throughput (60%-80%) and display diffraction-limited performance over apertures of 20 mm or more. Tests of the gratings done in reflection are in good agreement with tests done in immersion. We assess the current state of the silicon grating technology as well as discuss further developments necessary for making gratings on larger silicon substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and evaluation of silicon immersion gratings for infrared astronomy.

Immersion gratings, diffraction gratings where the incident radiation strikes the grooves while immersed in a dielectric medium, offer significant compactness and performance advantages over front-surface gratings. These advantages become particularly large for high-resolution spectroscopy in the near-IR. The production and evaluation of immersion gratings produced by fabricating grooves in sil...

متن کامل

Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings

Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

Diffraction-limited performance of flat-substrate reflective imaging gratings patterned by DUV photolithography.

We report on the first demonstration of flat substrate imaging gratings fabricated by deep ultraviolet (DUV) photoreduction lithography, which uniquely offers sub-100-nm resolution and spatial coherence over centimeter scales. Reflective focusing gratings, designed according to holographic principle, were fabricated on 300-mm silicon wafers by immersion DUV lithography. Spatial coherence of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006